

Combining Descriptive Methods
and Probabilities
Slide 3
In this chapter we will construct probability distributions by presenting possible outcomes along with the relative frequencies we expect.

Figure 4-1
Copyright © 2004 Pearson Education, Inc.

Definitions

* A discrete random variable has either a finite number of values or countable number of values, where "countable" refers to the fact that there might be infinitely many values, but they result from a counting process.
* A continuous random variable has infinitely many values, and those values can be associated with measurements on a continuous scale in such a way that there are no gaps or interruptions.

Overview

This chapter will deal with the construction of probability distributions
by combining the methods of descriptive statistics presented in Chapter 2 and those of probability presented in Chapter 3.

Probability Distributions will describe what will probably happen instead of what actually did happen.

Copyright © 2004 Pearson Education, Inc.

Definitions

A random variable is a variable (typically represented by X) that has a single numerical value, determined by chance, for each outcome of a procedure.

A probability distribution is a graph, table, or formula that gives the probability for each value of the random variable.

Mean, Variance and Standard Deviation of a Probability Distribution Mean $\quad \mu=\sum(x \cdot P(x))$ Variance$\quad \sigma^{2}=\sum x^{2} \bullet P(x)-\mu^{2}$	
Standard Deviation	$\sigma=\sqrt{\sigma^{2}}$

Using TI Probability Distribution slide 9	
1) Enter x-values into L1,	\square
2) Enter corresponding $P(x)$ into L2,	或
3) stat, calc, 1-var stats, L1, , , L2, enter Note: $\mathrm{n}=1$ and $\mathrm{S}_{\mathrm{x}}=$ blank	

Using TI: Probability Histogram Slide 12
5) Now enter the following setting for PLOT1

6) Now select GRAPH

Roundoff Rule for

μ, σ, and σ^{2}

Round results by carrying one more decimal place than the number of decimal places used for the random variable x. If the values of x are integers, round μ, σ, and σ^{2} and to one decimal place.

Identifying Unusual Results Probabilities

Rare Event Rule
If, under a given assumption (such as the assumption that boys and girls are equally likely), the probability of a particular observed event (such as 13 girls in 14 births) is extremely small, we conclude that the assumption is probably not correct.

* Unusually high: x successes among n trials is an unusually high number of successes if $P(x$ or more) is very small (such as 0.05 or less).
* Unusually low: x successes among n trials is an unusually low number of successes if $P(x$ or fewer) is very small (such as 0.05 or less) Copyight © 2004 Pearson Education, Inc

Identifying Unusual Results Range Rule of Thumb

According to the range rule of thumb, most values should lie within 2 standard deviations of the mean.

We can therefore identify "unusual" values by determining if they lie outside these limits:

Maximum usual value $=\mu+2 \sigma$
Minimum usual value $=\mu-2 \sigma$

Definition

The expected value of a discrete random variable is denoted by E, and it represents the average value of the outcomes. It is obtained by finding the value of $\Sigma[x \cdot P(x)]$.

$$
E=\Sigma[x \cdot P(x)]
$$

Copyright © 2004 Pearson Education, Inc.

Definitions

A binomial probability distribution results from a procedure that meets all the following requirements:

1. The procedure has a fixed number of trials.
2. The trials must be independent. (The outcome of any individual trial doesn't affect the probabilities in the other trials.)
3. Each trial must have all outcomes classified into two categories.
4. The probabilities must remain constant for each trial.

Notation for Binomial Probability Distributions
S and F (success and failure) denote two
possible categories of all outcomes; p and q will
denote the probabilities of S and F, respectively,
so
$P(S)=p \quad(p=$ probability of success $)$
$P(F)=1-p=q \quad(q=$ probability of failure $)$

Notation (cont)	
n	denotes the number of fixed trials. xdenotes a specific number of successes in n trials, so x can be any whole number between 0 and n, inclusive. pdenotes the probability of success in one of the n trials. denotes the probability of failure in one of the n trials. denotes the probability of getting exactly x successes among the n trials.
	Copyrigh © 2004 Pearson Education, Inc.

Important Hints

\qquad

* Be sure that x and p both refer to the same category being called a success.
* When sampling without replacement, the events can be treated as if they were independent if the sample size is no more than 5% of the population size. (That is n is less than or equal to 0.05 N .)

Methods for Finding

 ProbabilitiesWe will now present three methods for finding the probabilities corresponding to the random variable x in a binomial distribution.

Binomial Probability

 Slide 23 Formula

Binomial Probability

Formula

Using TI: Binomial Distribution Slide 25 Evaluation of the formula

Example: Find $\mathrm{P}(\mathrm{x}=2)$ when $\mathrm{n}=6$, and $\mathrm{p}=0.7$. $6 \mathrm{nCr} 2 *$

1) Enter 6, MATH, PRB, nCr, 2, X
2) $0.7^{\wedge} 2 \times 0.3^{\wedge} 4$, then enter
$\underset{3 \wedge 4 \mathrm{n}}{\mathrm{K}} \mathrm{n} 2 * 0.7^{\wedge} 2 * 0$.
Final Answer: $\begin{array}{r}\frac{6}{3 \wedge} \mathrm{n}^{\mathrm{ncr}} 2 \mathrm{2*0.7} \mathrm{\wedge 2*6.} .059535\end{array}$

Copyright © 2004 Pearson Education, Inc

Method 2: Using Table A-1 in Appendix A
 Slide 26

Part of Table A-1 is shown below. With $n=4$ and $p=0.2$ in the binomial distribution, the probabilities of $0,1,2,3$, and 4 successes are $0.410,0.410,0.154,0.026$, and 0.002 respectively.

From Table A-1:			Binomial probability distribution for $n=4$ and $p=0.2$	
n	x	0.20	x	$P(x)$
4	0	0.410	0	0.410
	1	0.410	1	0.410
	2	0.154	2	0.154
	3	0.026	3	0.026
	4	0.002	4	0.002
Copyright© 2004 Pearson Education, Inc.				

Using TI: Binomial Distribution
 Slide 29

Example: Find $P(x=2)$ when $n=6$, and $p=0.7$.
Using TI: Binomial Distribution
Slide 30
Example: Find $\mathrm{P}(\mathrm{x}=2)$ when $\mathrm{n}=6$, and $\mathrm{p}=0.7$.
3) Enter to execute this binompdf (6,0.7,2 operation and get the . 059535 final answer.

This result was obtained earlier by directly using the binomial distribution formula.

Using TI: Binomial Distribution slide 33
Example: Find $P(x<=2)$ when $n=6$, and $p=0.7$.

3) Enter to execute this
operation and get the
final answer.
$P(x<=2)=P(x=0)+(P(x=1)+P(x=2)$

Copyright © 2004 Pearson Education, Inc.

Using TI: Binomial Distribution		Slide 35
Example: Find $P(x>=2)$ when $n=6$, and $p=0.7$.		
1) Enter 1- Select 2nd, VARS, arrow down to get to 0:binomcdf(enter to select, then type 6,0.7, 2-1)	$\begin{aligned} & 1-\text { binomedf }(6,0.7 \\ & 2-1) \end{aligned}$ 1-binomedf (6,0.7	
2) Enter to get the final answer	,2-1) . 989065	
$P(x>=2)=P(x=2)+P(x=3)+\bullet \bullet+P(x=6)$		
Copyright 2004 Pearson Education, Inc.		

Using TI: Binomial Distribution Shide 32
Example: Find $P(x<=2)$ when $n=6$, and $p=0.7$.

1) Select 2nd, VARS, arrow down to get to 0 :binomcdf(enter to select	
2) Enter 6,0.7, 2)	$)^{\text {binomedf }}$ (6, 0.7,2

.

Binomial Distribution: Formulas

Mean $\boldsymbol{\mu}=\boldsymbol{n} \cdot \boldsymbol{p}$

Variance $\sigma^{2}=\boldsymbol{n} \cdot \boldsymbol{p} \cdot \boldsymbol{q}$
Std. Dev. $\sigma=\sqrt{n \cdot p \cdot q}$

Where

$n=$ number of fixed trials
$p=$ probability of success in one of the n trials
$q=$ probability of failure in one of the n trials

Example

Find the mean and standard deviation for the number of girls in groups of 14 births.

This scenario is a binomial distribution where:
$n=14$
$p=0.5$
$q=0.5$
Using the binomial distribution formulas:

Copyright © 2004 Pearson Education, Inc

Interpretation of Results

It is especially important to interpret results. The range rule of thumb suggests that values are unusual if they lie outside of these limits:

Maximum usual values $=\mu+2 \sigma$
Minimum usual values $=\mu-2 \sigma$

Copyright © 2004 Pearson Education, Inc.
This scenario is a binomial distribution where

$$
\begin{aligned}
& n=14 \\
& p=0.5 \\
& q=0.5
\end{aligned}
$$

Using the binomial distribution formulas:
$\mu=(14)(0.5)=7$ girls
$\sigma=\sqrt{(14)(0.5)(0.5)}=1.9$ girls (rounded)

Example

Determine whether 68 girls among 100 babies could easily occur by chance.

For this binomial distribution,
$\mu=\mathbf{5 0}$ girls
$\sigma=5$ girls
$\mu+2 \sigma=50+2(5)=60$
$\mu-2 \sigma=50-2(5)=40$
The usual number girls among 100 births would be from 40 to 60 . So 68 girls in 100 births is an unusual result.

Definition

Poisson Distribution Requirements

* The random variable X is the number of occurrences of an event over some interval.
* The occurrences must be random.
* The occurrences must be independent of each other.
* The occurrences must be uniformly distributed over the interval being used.

Parameters

*The mean is μ.

* The standard deviation is $\sigma=\sqrt{\mu}$.

Using TI：Poisson Distribution		$\text { Slide } 45$
Example：Find $\mathrm{P}(\mathrm{x}=2)$ when $\mu=3$ ．		
1）2nd VARS arrow down to poissonpdf（		
2）enter to select， then type 3，2）	poissonfdf（3，2）	

Using TI：Poisson Distribution		$\text { Slide } 47$
Example：Find $P(x<=3)$ when $\mu=3$ ．		
1）2nd VARS arrow down to poissoncdf（ 2）enter to select， then type 3，3）	tredfe 畧：binompdf poissoncdf（3，3）	
Coperight 2004 Peason Educaion，Inc．		

Using TI

Poisson Distribution
$P(x=a)$
1）2nd VARS（ DISTR ）
2）Arrow down to poissonpdf（
3）enter
4）μ, ，，a enter

Using TI：Poisson Distribution
 Slide 48

Example：Find $P(x<=3)$ when $\mu=3$ ．
3）enter to get the $\quad \begin{aligned} & \text { poissoncdf（3，3）} \\ & \text { Final Answer：}\end{aligned}$

$$
P(x<=3)=P(x=0)+P(x=1)+P(x=2)+P(x=3)
$$

Difference from a Binomial Distribution

The Poisson distribution differs from the binomial distribution in these fundamental ways:

* The binomial distribution is affected by the sample size n and the probability p, whereas the Poisson distribution is affected only by the mean μ.
* In a binomial distribution the possible values of the random variable are x are $0,1, \ldots n$, but a Poisson distribution has possible x values of $0,1, \ldots$, with no upper limit.

Copyright © 2004 Pearson Education, Inc

Slide 49

Poisson as Approximation to Binomial

\qquad

The Poisson distribution is sometimes used to approximate the binomial distribution when n is large and p is small.

Rule of Thumb

$$
n \geq 100
$$

$P(x)=\frac{\mu^{x} \cdot e^{-\mu}}{x!}=\frac{0.929^{2} \cdot 2.71828^{-0.929}}{2!}=\frac{0.863 \cdot 0.395}{2}=0.170$

The probability of a particular region being hit exactly twice is $P(2)=0.170$.

$$
n p \leq 10
$$

Example

World War II Bombs In analyzing hits by V-1 buzz bombs in World War II, South London was subdivided into 576
regions, each with an area of $0.25 \mathrm{~km}^{2}$. A total of 535
bombs hit the combined area of 576 regions
If a region is randomly selected, find the probability that it was hit exactly twice.

The Poisson distribution applies because we are dealing with occurrences of an event (bomb hits) over some interval (a region with area of $0.25 \mathrm{~km}^{2}$).

Example

The mean number of hits per region is

$$
\boldsymbol{\mu}=\frac{\text { number of bomb hits }}{\text { number of regions }}=\frac{535}{576}=0.929
$$

Monterey Park Police department issues 5 J -
walking citations in average during one week of school to ELAC students. Find the probability that at least 4 J -walking tickets will be issued this week by MPPD?
Solution: $P(x>=4)=1-P(x<4)$

1) Enter 1-2nd VARS arrow
down to poissoncdf(1-poissoncdf(I
2) ENTER to select
$n \geq 100$

* $n p \leq 10$

Value for μ
$\mu=\boldsymbol{n} \cdot \boldsymbol{p}$

Monterey Park Police department issues 5 Jwalking citations in average during one week of school to ELAC students. Find the probability that at least 4 J -walking tickets will be issued this week by MPPD?
3) Type 7, 4-1)
-1-PGissoncdf $\langle 7,4$
4) Enter to execute this -1) -poissoncdf (7,4 command and get the ${ }^{-1)} .9182345838$ final answer.

